Two free radical pathways mediate chemical hypoxia-induced glutamate release in synaptosomes from the prefrontal cortex.

نویسندگان

  • Yi Dong
  • Wen Zhang
  • Bin Lai
  • Wen-Jie Luan
  • Yan-Hua Zhu
  • Bing-Qiao Zhao
  • Ping Zheng
چکیده

It has been known that the inhibition of mitochondrial cytochrome c oxidase is one of the earliest events occurring under hypoxia and this inhibition can lead to neuronal damages. Thus, the cytochrome c oxidase inhibitor sodium cyanide (NaCN) is widely used to produce a model of chemical hypoxia by inhibiting this enzyme. However, the downstream signaling pathways of the inhibition of the cytochrome c oxidase remain to be studied. In the present paper, we used sodium cyanide to mimic the inhibition of the mitochondrial cytochrome c oxidase and studied its effect on glutamate release in synaptosomes from the prefrontal cortex using on-line fluorimetry. We also further investigated the mechanisms underlying the enhancing effect of sodium cyanide on glutamate release using pharmacological approaches combined with other techniques. The results showed that sodium cyanide significantly increased glutamate release from synaptosomes of prefrontal cortex; the broad-spectrum free radical scavenger MnTBAP and melatonin completely abolished the effect of sodium cyanide on glutamate release; the H2O2-NMDA receptor pathway mediated one part, whereas the lipid peroxyl radicals-ATP synthase pathway mediated another part of the sodium cyanide-induced glutamate release; scavenging H2O2 and enhancing ATP synthase activity could completely abolish the sodium cyanide-induced glutamate release.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute Stress Increases Depolarization-Evoked Glutamate Release in the Rat Prefrontal/Frontal Cortex: The Dampening Action of Antidepressants

BACKGROUND Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate rel...

متن کامل

Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways

Objective(s):Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. Here, the protective effects of ferulic acid (FA) on hypoxia-induced neurotoxicity in PC12 cells were evaluated. Materials and Methods:We investigated the effect of FA on PC12 cells subjected to hypoxia stress, in vitro. Results:FA increased cell viability, prevented membrane damage (LDH r...

متن کامل

Free radicals enhance basal release of D-[3H]aspartate from cerebral cortical synaptosomes.

Excessive generation of free radicals has been implicated in several pathological conditions. We demonstrated previously that peroxide-generated free radicals decrease calcium-dependent high K(+)-evoked L[3H]-glutamate release from synaptosomes while increasing calcium-independent basal release. The present study evaluates the nonvesicular release of excitatory amino acid neurotransmitters, usi...

متن کامل

Effect of oxidative stress on excitatory amino acid release by cerebral cortical synaptosomes.

Previous studies in our laboratory have suggested that an oxidation reaction is responsible for the actions of free radicals to decrease synaptic potentials. Recently we observed that free radicals both decreased depolarization-induced vesicular release and enhanced basal, nonvesicular release of the excitatory amino acid, [3H]L-glutamate. In order to evaluate the contribution of oxidative reac...

متن کامل

Effect of Paraoxon on GABA Uptake by Rat Cerebral Cortex Synaptosomes

Background: It has been suggested that organophosphates may inhibit gamma-aminobutyric acid (GABA) metabolism in synaptosomal preparations. In the present investigation, we have assessed the interaction between paraoxon and the GABA system at synaptic level. Methods: Synaptosomes were prepared from male Wistar rats (200-250 g). Cerebral cortex was dissected and homogenized, then centrifuged at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1823 2  شماره 

صفحات  -

تاریخ انتشار 2012